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Chapter I

Introduction

An important component of any design process is a mechanism for incrementally

checking the validity of design decisions and the interactions among those decisions.

There must be a feedback path from the partially completed design back to the de-

signer, allowing the designer to find and correct mistakes before fabrication. In modern

digital circuit design, this feedback path is often provided by computer-aided simula-

tion. However, in recent years integrated circuit technology has been advancing very

rapidly. It is now possible to build chips containing more than 500,000 transistors.

The current generation of simulation tools is already stretched to the limit, and will

soon prove incapable of meeting this increase in demand. If circuit design is to keep

pace with technology, radically new approaches to simulation will be necessary. One

promising approach is to depart from the von Neumann style of computation and take

advantage of recent advances in the field of parallel processing to build fast, scalable

simulation tools.

1.1. Overview

In digital circuit design, the feedback path from a partially completed design back

- 13 -
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to the designer is typically provided by computer-aided simulation. Historically, there

have been two general approaches to circuit simulation: analytical and functional. Ana-

lytical simulators, such as SPICE, use detailed, non-linear models of circuit components

drawn from fundamental physical principles, and solve the resulting set of ordinary

differential equations using sparse matrix methods [121. Because of this level of detail,

analytical simulators tend to be computationally expensive, and so are limited in prac-

tice to the simulation of relatively small circuits (a few tens or hundreds of transistors).

More recently, a number of algorithms have been developed to substantially improve the

performance of circuit analysis programs. These include table lookup methods, such

as those used in MOTIS [5], and iterated relaxation methods, such as those employed

by SPLICE [18] and RELAX [13]. Although these newer techniques offer more than an

order of magnitude performance improvement over the sparse matrix approach, they

still cannot economically simulate one entire chip.

At the opposite end of the spectrum from circuit analysis are functional simula-

tors, such as LAMP [4] and MOSSIM [3], which combine very simple models of circuit

components, e.g., gates or switches, with efficient event based simulation algorithms.

This class of simulation tool is very useful for determining logical correctness, but offers

no timing information. In the past few years, a third approach has emerged which tries

to find a middle ground between analytical and functional simulation. Examples of

this approach include the timing analyzers CRYSTAL [141 and TV [9], and the circuit

simulator RSIM [19]. Each of these tools uses simple linear models of the electrical char-

acteristics of the components to predict the timing behavior of a circuit. These tools

permit one to obtain timing information on circuits of tens of thousands of devices, at

the expense of some accuracy. Unfortunately, they are al-o reaching the limits of their

capacities.

There are several approaches to solving the problem of capacity limitations. The

first, and most obvious, solution is to vectorize the old algorithms to run on faster

machines, such as the Cray and the CDC Cyber. The second approach is to develop

- 14 -



new, faster algorithms, such as the relaxation based schemes mentioned earlier. An-

other approach which has gained favor in certain circles is the development of special

purpose hardware which is capable of running one specific algorithm very fast. Exam-

ples of this approach are the simulation pipeline of Abramovici [1], and the Yorktown

Simulation Engine, developed by IBM [15]. Unfortunately, these solutions tend to be

very expensive and applicable to only a very limited class of problems.

General purpose parallel processing offers several advantages over these other ap-

proaches.

* Scalability - Simulation algorithms can be developed which are indepen-

dent of the number of processors in the system. As the size of the circuit

grows, the number of processors, and hence the performance of the sim-

ulation, can grow.

0 Flezibility - The machine architecture is not tuned for one particular

algorithm. Therefore, the same physical hardware can be pressed into

service for a wide range of applications, extending the utility of the ma-

chine.

* Portability - The parallel algorithms developed need not be constrained

to a particular machine architecture. Therefore, the same algorithms can

be run on a wide variety of parallel systems, extending the utility of the

algorithms.

This thesis explores the issues involved in developing a framework for circuit simu-

lation which can utilize the advdttages offered by general purpose parallel comr'itation.

The approach is based upon the observation that the locality of digital circuit opera-

tion, and the resulting independence of separate subcircuits, leads very naturally to a

high degree of parallelism. The framework developed in this thesis attempts to reflect

the inherent parallelism of the circuit in the structure of the simulator.

1.2. Chapter Outline

Chapter 2 presents a novel approach to digital circuit simulation. This chapter

- 15 -



begins by exploring the techniques for mapping the circuit under simulation onto the

topology of a general purpose multiprocessor. The synchronization problems imposed

by the resulting precedence constraints are then examined, and a unique solution based

upon history maintenance and roll back is proposed. The problem of partitioning a

circuit in a fashion conducive to this form of simulation is then addressed. Finally,

related work in the field of parallel simulation is reviewed.

Chapter 3 presents the implementation of the simulator Parallel RSIM, or PRSIM.

This chapter begins with background information on the RSIM simulation algorithm and

the Concert multiprocessor on which PRSIM is built. The overall structure of PRSIM

is presented, with particular concentration on interprocessor communication and the

history maintenance and roll back synchronization mechanisms.

Chapter 4 presents experimental results obtained from PRSIM. A series of exper-

iments were designed and run to determine the overall performance of PRSIM, and to

develop a solid understanding of the various overhead costs in PRSIM. The results from

these experiments are analyzed, and some conclusions are drawn.

Chapter 5 concludes the thesis with a summary of the work reported and sugges-

tions for future research.
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"Chapter II

Parallel Simulation

Digital circuit operation exhibits a high degree of locality. At the device level,

there is locality in the operation of individual transistors. Each transistor operates in

"isolation, using only the information available at its terminal nodes. At a somewhat

higher level, there is locality in the operation of combinational logic gates. The output

behavior of a gate is strictly a function of its input values. At a still higher level,

there is locality in the operation of functional modules. The instruction decode unit

*2. of a microprocessor has no knowledge of what is transpiring in the ALU. It merely

performs some function upon its inputs to produce a set cf outputs.

The locality property of circuit operation is reflected in the structure of many

simulation algorithms. So called event based simulators exhibit a similar degree of

locality. A switch level simulator determines the value of a node by examining the state

"- of neighboring switches. This locality property of the simulation algorithm implies the

"-" simulation of constituent subcircuits is independent. The simulations of two logic gates

separated in space are independent over short periods of time.

- 17 -



This independenLce property has several interesting implications for the design of

parallel simulation tools. First, it promises to be unaffected by scale. The potential

parallel;m increases linearly with the size of the circuit to be simulated. Second, it

implies homogeneity of processing. Each processor can run the same simulation code

on its own piece of the circuit. Third, the circuit database can be distributed across the

multiprocessor. This eliminates the potential bottleneck presented by a shared network

database, and allows the simulator to teke advantage of the natural structure of the

circuit.

In this chapter a framework for circuit simulation is presented which takes ad-

vantage of the independence inherent in circuit operation to achieve a high degree of

parallelism. The general strategy is to map the circuit onto the target multiprocessor

such that the parallelism of the simulation reflects the parallelism of the circuit. The

framework uses a simple message passing approach to communication. Interprocessor

synchronization is based upon a novel history maintenance and roll back mechanism.

2.1. A Framework for Parallel Simulation

There are several desirable properties our framework should have. First, the re-

sulting simulator must be scalable. As the number of devices in the circuits that we

wish to simulate increases, the performance of the simulator must also increase. There-

fore, the framework should be capable of scaling to an arbitrary number of processors.

Second, the framework should be relatively independent of the simulation algorithm.

We would like to be able to apply the same strategy to a wide range of tools, from low

level MOS timing analyzers to high level architectural simulators. Third, to permit

our scheme to run on a variety of general purpose parallel machines, we must make no

special demands of the underlying processor architecture. In particular, to be capable

of running on both tightly and loosely coupled multiprocessors, a simulator should im-

pose as few restrictions as possible on the nature of the interprocessor communication

mechanism. We would like to avoid relying upon shared memory and imposing limits

on message latencies.

S~- 18 -



The strategy we shall follow is to map the circuit to be simulated onto the topology

of the target multiprocessor. For simulation on an n processor system, the circuit to be

simulated is first broken into n subcircuits, or partitions. Each partition is composed

of one or more atomic units, e.g., gates or subnets. An atomic unit is the collection

of local network information necessary for the simulation algorithm to determine the

value of a circuit node. E•ach processor is then assigned the task of simulating one

partition of the circuit. Figure 2.1 demonstrates graphically the decomposition of a

network of atomic units into two partitions.

------------------- ---------------

Partition A Partition B

Figure 2.1. Partitioning a Network

The straight lines crossing the partition boundaries represent communication links 6;

between logically adjacent atomic units which have been placed in different partitions.

In actual circuit operation, separate components communicate via the signals carried by

electrical c-nmections they have in common. Similarly, in simulation adjacent atomic

units communicate only via the values of shared nodes. Therefore, the information

which must be passed along the communication links consists of node values only. There

* is no need to share a common network database or pass non-local network information

between partitions.

Communications issues tend to dominate the design of large digital circuits. Suc-

cessful designs must constrain commtiniation between submodules to meet routing

* and bandwidth requirements imposed by the technology. These constraints are similar

a.
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to those imposed by some multiprocessor architectures. Such constraints are often the

source of performance limitations in parallel processing. Because the communication

structure of the simulation in our framework is closely related to that of the actual

circuit, our framework can easily utilize the natural modularity and optimizations in a

circuit design to reduce interpartition, and hence interprocessor, communication.

In order to further reduce communication and to guarantee a consistent view of

the state of the network across all processors, we shall enforce the restriction that

the value of every node is determined by exactly one partition. Therefore, the links

shown in Figure 2.1 will be unidirectional; a node may be either an input or an output

of a partition, but never both. If more than one partition were allowed to drive a

particular node, each partition would require information about the state of the other

drivers to determine the correct value of the node. By eliminating the possibility of

multiple drivers we eliminate the need for this non-local information and the extra

communication required to arbitrate such an agreement.

This is not as serious a restriction as it first appears. In an MOS circuit, it

implies all nodes connected through sources or drains of transistors, such as pullup and

pulIdown chains and pass transistor logic, must reside in the same partition. Since such

structures are the components of higher level logic gates, it makes sense to keep them

close together. The only difficulty arises from long busses with many drivers. This case

results in a "bit slice" style of partitioning, where all of the drivers for one bit of the

bus reside in the same partition, but different bits may reside in separate partitions.
Since there tends to be relatively little communication from one bit to another, this

restriction actually obeys the natural decomposition of digital circuits.

2.2. Synchronization

2.2.1 Precedence Constraints

A node shared between two partitions represents a precedence constraint. Enforc-

ing this precedence constraint requires additional communication and can introduze

-20-



delay in a poorly balanced simulation. Consider the circuit in Figure 2.2. Let T(A) be

the current simulated time of partition A, and T(B) be the current simulated time of

partition B. For B to compute the value of node Y at tj it must determine the value

of node X at tl. If at the point where B requests the value of node X, T(A) < ti (i.e.

A is running slower than B), the request must be blocked until T(A) Ž_ tl, potentially

suspending the simulation of B. This interruption results from the need to synchronize

the simulations of partitions A and B.

- I-- - - - --- -- -- - -- -- -

T X

'R -- YII

Partition A Partition B
------------- I -------------- I

Figure 2.2. Data Dependence Between Two Partitions

The circular precedence constraint introduced by feedback between two (or more)

partitions can result in a forced synchronization of the simulations. In Figure 2.3

feedback has been introduced into the previous example by connecting node Y of

partition B to node T of A. Each gate is assumed to have a delay of r seconds. If A

has computed the value of X at T(A) = to, B is free to compute the value of Y at

to + r. However, for A to proceed to compute the value of X at to + 2r, it must wait

until T(B) Ž to + r, that is until B has finished computing Y at to + r. The feedback

has forced the two partitions into lock step, with each partition dependent upon a value

computed during the previous time step of the other.

2.2.2 Input Buffering

These synchronization problems arise from the coupling between partitions intro-

duced by shared nodes. With this in mind, the following observation can be made:

If all partition inputs remained constant, there would be no precedence constraints to

- 21 -
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Partition A Partition B

Figure 2.3. Data Dependence With Feedback

enforce. Each partition could be simulated independently of the others. This principle

can be used to decouple partitions by introducing a level of buffering between each par-

tition, as shown in Figure 2.4. Each partition maintains a buffer for each input node.

Simulation is then allowed to proceed based upon the assumption that the currently

buffered value of each input will remain valid indefinitely.

----------- ----- I ----------- I

xx

R'

Partition A Partition B
------------ ---------

Figure 2.4. Input Buffering Between Partitions

When a partition changes the value of an output node, it informs all other par-

titions for which that node is an input. This is the basic form of interpartition com-

munication. Changes in shared node values propagate from the driving partition to

the receiving partitions. The information passed for a node change consists of a triple

composed of the name of the node that changed, the new value of that node, and the

simulated time the change took place. The receiving partitions use this information to

update their input buffers, and, if necessary, correct their simulations.

2.2.3 Roll Back Synchronization

To maintain a consistent state of the network across the multiprocessor, some form

- 22 -



of synchronization is P.ecessary. In the previous example, it is possible for partition B

to get sufficiently far ahead of A that its assumption of constant inputs will result in

incorrect simulation. Some form of correction is necessary. To this end, we employ

a checkpointing and roll back strategy derived from the state restoration approach to

fault tolerance in distributed systems 1161 [17]. As the simulation progresses, a partition

periodically stops what it is doing and takes a checkpoin~t '` il~e current state of the

simulation. This action is analogous to entering a recovery block in [161. The checkpoint

contains a record of all of the pieces of state in the partition: the value of every node,

all pending events, and any state information kept by the simulation algorithm (e.g.,

the current simulated time). From this che-zkpoint, the simulation of the partition car

be completeiy restored to the current state at any future time, effectively rolling the

simulation back to the time the checkpoint was taken. The set of saved checkpoints

forms a complete history of the simulation path from the last resynchronization tp to

the current time.

When a partition receives an input change, one of two possible actions will occur.

If the simulated time of the input change is greater than the current time, a new event

representing the change is scheduled and simulation proceeds normally. However, if

the simulated time of the input change is less than the current time, the simulation

is "rolled back" to a point preceding the input change. This roll back operation is

accomplished by looking back through the checkpoint history to find the most recent

checkpoint taken prior to the scheduled time of the input change. The simulation state

is then restored from that checkpoint, a new event is scheduled for the input change,

and simulation is resumed from the new simulated time.

Figure 2.5 shows a partial history of the simulation of two partitions, A and B.

The time line represents the progression of simulated time. The "X" marks represent

the times at which checkpoints were taken. The broken vertical line indicates a node

change directed from one partition to another. The current time of each partition is

shown by the corresponding marker.

-23-



Partition A X A\

T(A)

Partition B

T(B)
Simulated

Time to tj t2 t3 t4 t5

Figure 2.5. Simulation Before Roll Back

The snapshot shows the point when partition B notifies A that the value of a shared

node changed at t 2 . Upon receipt of the input change message, the simulation of A is

suspended and the checkpoint history is searched for the most recent checkpoint prior

to t 2 . The state of A is then restored to time t1 from the appropriate checkpoint. An

event is scheduled for t 2 to record the change of the input node. The old simulation path

b-- ond tI is now invalid, so all checkpoints taken after t1 are thrown away. Partition

A is now completely restored to t1 and simulation may continue. Figure 2.6 shows

a snapshot of the simulation immediately following the completion of the roll back

operation.

Partition A
LY\I

T(A) '

Partition B

SimulatedT S I I I I >
Time:.-to tl t2 t3 t4 t I

-.. 4.

Figure 2.6. Simulation After Roll Back of Partition A

2.2.4 Consistency Across Roll Back

To maintain consistency across roll back, additional communication is required.

Figure 2.7 shows the interactions among three partitions. At tS partition C notifies B

-24-



p...

that a shared node has changed value. Since T(B) > t3 , B is forced to roll back to the

most recent checkpoint prior to t3 , which is at to. The node change from C to B does

not directly effect A. However, since B will embark upon a new simulation path from

to, the input change B sent to A at t 2 will be invalid. To ensure the consistency of A, a

roll back notification message is introduced. Upon rolling back, B sends A a roll back

notification message informing it that any input changes from B more recent than to

must be invalidated. This does not necessarily force A to roll back. If T(A) < t 2, the

time of the earliest input change from B more recent than to, A need only flush the

input change at t 2. If T(A) > t 2, A would be forced to roll back to a point prior to t2.

Partition A

T(A)

Partition B __ A

T(B)

P xtition C >A r
T(C-) .

SimulatedTuneI I W>'Time '•
to ti t2 s3 t 4

Figure 2.7. Roll Back Notification

The roll back notification procedure can be optimized if each partition maintains

a history of output changes to implement a change retraction mechanism. At each

time step, a partition checks the output history for the current simulated time. If, in

a previous simulation path, an outi ut change occurred which did not take place in the

"." current path, a retraction is sent to all dependent partitions, and the output change is

removed from the history. If the change did occur in the current path, no new change

messages are necessary. Consider Figure 2.7. Since the change which forced B to roll

back occurred at t3 , B will follow the same simulation path from to to t3 , making the

same node change at t2 . Therefore, B need not resend this change to A. A will not be
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forced to roll back even if T(A) > t2.

We must still address the problem of convergence in the presence of feedback. With

the scheme outlined so far, it is possible for two partitions with a circular dependence

to synchronize, with each partition repeatedly forcing the other to roll back. Figure 2.8

demonstrates this problem. When B notifies A of the change at t 2 , A will be forced to

roll back to to. If B progresses beyond t3 before A reaches t3 , B will be forced to roll

back to tx. Once again, when B reaches t 2 , A will be forced back to to, and the cycle

repeats forever.

Partition A

T(A)
Partition B

T(B)
Simulated I I I >

Time t 1

Figure 2.8. Convergence Problem in the Presence of Feedback

"If B had taken a checkpoint at t such that t2 < t < t3 , it would not have forced

"" A to roll back, and the cycle would have been avoided. However, if the changes occur

simultaneously (t 2 = t3 ), we are agaiu faced with the infinite cycle. To solve this

problem, we first make the following assertion about the nature of the simulation

"algorithm: the elapsed simulated time between an input change and any resulting new

events is non-zero. This assertion can be made true by proper partitioning of the

network. This restriction allows the simulation of a single time step to be sub-divided

into two distinct phases:

1. the processing of all internally generated events queued for the current

simulated time, including the propagation of output changes to other

partitions;

2. the processing of all externally generated input changes queued for the
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current simulated time.

This in turn permits us to take a checkpoint between the two phases of the simulation, A

after any output changes have been made and before any input changes have been

processed. Returning to the example of Figure 2.8, if B were to take a checkpoint at

t2 , it could be rolled back safely without causing a further roll back in A, even in the

limit of t2 = t3 . Forward progress is assured if we can guarantee the,'e will always be

a checkpoint in the right place.

The convergence problem is related to the "domino effect" observed in distributed

systems, where one failure can cause many interdependent processes to repeatedly

roll back until they reach their initial state [16][17]. In the context of simulation we

have shown that this problem arises from synchronization of precedence constraints

imposed by the partitioning. Under these circumstances, the best that can be done,

short of dynamically repartitioning to ease the constraints, is to guarantee convergence.

This is done by subdividing the simulation of a single time step into two phases, and

checkpointing between the phases.

2.2.5 Checkpointing

The checkpointing strategy must meet the following constraints: the checkpoint

must contain all of the state necessary to completely restore the simulation; there must

always be at least one consistent state to fall back to; and it must be possible to make

forward progress in the event of unexpected synchronization. In addition to these

constraints, there are some less important but still desirable properties a checkpoint

strategy should have. For example, to prevent rolling back further than necessary, the

simulation should be checkpointed frequently. In the limit, a checkpoint at every time

step would eliminate redundant work. We would also like the checkpointing process to

be as inexpensive in both space and time as possible. There is a tradeoff between the

cost we are willing to pay when forced to roll back and the cost we are willing to pay

for checkpointing overhead.

We expect the communication between partitions in a statically well-partitioned
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circuit to be clustered in time, e.g., around clock edges. This implies the probability

of receiving a node change is greatest immediately following a change, and decreases

as the time since the last change increases. The probability of roll back should follow

a similar pattern. Therefore, to reduce the amount of redundant simulation caused

by rolling back, we would like to have a high density of checkpoints in the vicinity of

communication clusters. If the dynamic balance of the partitioning is less than ideal,

some of the partitions will simulate faster than others. In this case, the amount of

redundant work forced upon the faster partitions by roll back is less critical, as they

will still catch up to and overtake the slower partitions. Therefore, if the time since
the last roll back is large, we can afford to reduce the density of checkpoints.

These observations have lead to a strategy of varying the frequency of checkpoint-

ing with time. Following each resynchronization and each roll back, a checkpoint is

taken at every time step for the first several steps, thus ensuring forward progress as

well as providing a high density of checkpoints As the simulation progresses, the num-

ber of time steps between checkpoints is increased up to some maximum period. The

longer the simulation runs without rolling back, the lower the checkpoint density, and

hence the overhead, becomes. We have arbitrarily chosen to use an exponential decay

function for the frequency until we have a better model of the probability distributions

of interpartition communication.

2.3. Partitioning

The overall performance of the simulator is determined by two factors: proces-

sor utilization, and communication costs. Both of these factors are influenced by the

manner in which the network is partitioned. To maximize processor utilization, the

simulation load must be evenly distributed among the processors. This implies par-

titioning the circuit into pieces of roughly equai size and complexity. To minimize

communication costs, the number of links between partitions should be minimized.

There are a number of classical graph partitioning algorithms which address both of

these criteria [101111.
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For example, consider the data path block diagram shown in Figure 2.9. A static

analysis of this circuit shows most of the communication paths are horizontal, from

left to right. Only in the carry chain of the ALU and in the shifter will there be any

communication from bit to bit. A static min-cut algorithm would partition this circuit

"into horizontal slices, following the flow of information along each bit. One would -

expect this partitioning to result in an even load balance, with little interprocessor

"communication.

Input Register Output Output
Mux ALU Shift

Data Array Register Data

* "

Figure 2.9. Data Path Floor Plan

Unfortunately, there are dynamic components to both processor utilization and

communication with which static partitioning algorithms are unable to cope. For ex-

ample, consider a 16-bit counter to be split into 4 partitions. A static min-cut algorithm

would divide this circuit into four 4-bit slices, in the same manner as the data path

above. Each partition would be exactly the same size, have only one input (the carry

in) and one output (the carry out). At first glance, this would seem to be a fine parti-

tioning. The dynamic behavior, however, will be quite poor. Both the simulation load

and the communication decrease exponentially from the low order partition to the high

order one, with the low order partition doing eight times the work of the high order

one. A more effective partitioning would have placed bit 0 of the counter (the low order

bit) in the first partition; bits 1 and 2 in the second partition; bits 3-6 in the third; and

bits 7-15 in the last. The dynamic load would then be much more evenly distributed.

Clearly, a partitioning strategy based only upon the static structure of the circuit

will not fare well under a wide range of applications. Some knowledge of the dynamic
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behavior of the simulation is necessary. One approach would be to begin with a static

partitioning, but dynamically repartition the network during the simulation by shuffling

atomic units between processors to optimize the load balance and communication. This

topic is beyond the scope of this thesis, and deserves future investigation.

2.4. Summary

In this chapter we have presented a framework for simulation which takes advan-

tage of the parallelism inherent in digital circuit operation. We proposed a scheme in

which the circuit to be simulated is partitioned onto the topology of the multiproces-

sor, with each processor responsible for the simulation of one partition. We discussed

the problems of synchronization introduced by this approach, and developed a solu-

tion based upon a history maintenance and roll back mechanism. This solution was

demonstrated to be zufflcient to guarantee convergence in the presence of feedback. Fi-

nally, we discussed the importance of good partitioning, and showed that static graph

partitioning algorithms may not be adequate.

We began this chapter by setting out three goals for a parallel simulation frame-

work. Let us now see how close our proposed framework comes to those goals.

* The framework is scalable to a large number of processors. As the size of

the circuit grows, we can increase the number of partitions, keeping the

average size of the partitions constant. The factors which will probably

limit the scalability will be the interprocessor communication mechanism

(e.g., bandwidth, congestion), and the effectiveness of the partitioning

algorithm.

* The framework does impose some constraints upon the nature of the sim-
ulation algorithm. We require an event based simulator whikh exhibits a

high degree of locality. A wide range of simulation tools will fit this de-

scription, but we exclude most low level circuit analysis programs, such

as SPICE.

* The framework has few requirements of the underlying multiprocessor
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architecture. The small amount of communication required makes it

suitable for both tightly and loosely coupled systems. The overall per-

"formance should degrade gracefully with increasing message latencies.

2.5. Related Work

The problems of parallel simulation have received a great deal of attention re-

cently. A number of the resulting research efforts have influenced the work reported in

this thesis. Among the most influential have been the work on the MSPLICE parallel

simulator and the Virtual Time model for distributed processing.

2.5.1 MSPLICE

MSPLICE is a multiprocessor implementation of a relaxation based circuit simulator

[6]. The algorithm employed is known as Iterated Timing Analysis, and is based upon

Newton-Raphsorn iteration to approximate the solution of the node equations which

describe the circuit. It makes use of event driven, selective trace technique-i similar to

those employed by SPLICE to minimize the amount of computation required per time

step of simulation [18].

The Iterated Timing Analysis method is extended for implementation on a mul-

tiprocessor by a "data partitioning" technique. The circuit to be simulated is divided

into sub-circuits, with each sub-circuit represented by a separate nodal admittance ma-

trix. Each sub-circuit is then allocated to a processor. Each processor, operating on the

same time step, applies the ITA algorithm to each of its sub-circuits until convergence

is reached. When every sub-circuit on every processor has converged, the simulation

advances to the next time step. Synchronization is achieved through a global variable

which represents the count of outstanding sub-circuit events for the current time step.

The approach to parallelism followed by MSPLICE is quite close to that of our pro-

posed framework. Both schemes seek to exploit the parallelism inherent in the circuit

through a data partitioning strategy: the circuit to be simulated is distributed across

the multiprocessor, with each processor running the same algorithm on different data.
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There are several important differences, though. The MSPLICE algorithm is necessarily

synchronous, with all of the processcrs simulating the same time step. This has two

important implications. First, the time required to simulate a particular time step is

determined by the slowest partition. Second, additional communication is required to

manipulate the global synchronization counter. Because of the nature of the relaxation

method, MSPLICE does not have the same locality properties as our framework. The

information necessary to compute the node values of a given sub-circuit is not necessar-

"ily local to a single processor. For each iteration, each processor rm-st fetch the current

values of all of the fanin nodes for each sub-circuit, and propagate events to all of the

fanout nodes. The communication requirements of MSPLICE imply a dependence upon

shared memory and a tightly coupled multiprocessor architecture, which we have tried

to avoid.

2.5.2 Virtual Time

Virtual Time is a model for the organization of distributed systems which is based

upon a lookahead and rollback mechanism for synchronization. In this model, processes

coordinate their actions through an imaginary Global Virtual Clock. Messages trans-

mitted from one process to another contain the virtual time the message is sent and

the virtual time the message is to be received. If the local virtual time of the receiver

is greater than the virtual time of an incoming message, the receiving process is rolled

back to an earlier state [81.

The basic strategy of Virtual Time is quite close to that followed by our simulation

framework presented earlier. Both propose the use of state restoration as a mechanism

"for the synchronization of parallel processes. The principal difference is that Virtual

Time is proposed as a general model for all forms of distributed processing. We are

only using the roll back synchronization in a very limited, very well characterized

domain. This has several implications. First, we take advantage of knowledge about

the context to strictly limit the amount of state information we wust keep. The Virtual

Time model requires saving the entire state of the process, including the stack and all
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non-local variables, at every checkpoint. Second, we have organized the problem such

that the amount of interprocessor communication is quite small. This in turn leads

to relatively infrequent roll backs. Third, we are able to make assumptions about the

distribution of the communication to reduce the frequency of checkpointing. It is not

clear how frequently the state must be saved in the Virtual Time system. Fourth, by

subdividing the simulation time step and carefully choosing the checkpoint strategy,

we are able to guarantee the convergence of the simulation. The general convergence

rroperties of Virtual Time are less well characterized. By taking advantage of the

structure of the simulation algorithm, the history maintenance and roll back approach

to synchronization becomes much more tractable.
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Chapter III

Implementation

It is all very well to theorize about parallel processing, but the best way to assess

the efficacy of a new idea is to try it. A simulator based upon the parallel framework

presented in Chapter Two was designed and built with the following goals:

9 to determine whether the roll back approach to interprocessor synchro-

nization can be made cost effective in the context of circuit simulation;

* to produce a fast, scalable circuit simulator capable of simulating the

next generation of VLSI circuits efficiently.

This chapter discusses the details of the implementation of that simulator.

3.1. Foundations

Parallel RSIM, or PRSIM, is a distributed circuit simulator which employs the his-

tory and roll back mechanisms discussed in Chapter Two. As the name implies, PRSIM

is based upon the RSIM algorithm of [19]. It is implemented on the Concert multipro-

cessor, developed at MIT [21[71.
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3.1.1 The RSIM Circuit Simulator

RSIM is an event-driven, logic level simulator that incorporates a simple linear

model of MOS transistors. In RSIM, MOS transistors are modeled as voltage controlled

switches in series with fixed resistances, while transistor gates and interconnect are

modeled as fixed capacitances. Standard RC network techniques are used to predict

not only the final logic state of each node, but also their transition times. This relatively

simple and efficient model provides the designer with information about the relative

timing of signal changes in addition to the functional behavior of the circuit without

paying the enormous computational costs of a full time domain analysis.

The electrical network in RSIM consists of nodes and transistors. Any MOS circuit

can be naturally decomposed into subnets if one ignores gate connections; the resulting

subnets each contain one or more nodes which are electrically connected through the

sources or drains of transistors. The nodes connected to gates of devices in a subnet

are the inputs of the subnet, and the nodes which are inputs of other subnets axe the

outputs of the subnet. Note that a node can be both an input and output of a single

subnet.

Subnets are the atomic units of the simulation calculation; in general RSIM will

recalculate the value of each node of a subnet if any input to the subnet changes. If, as

a result of the recalculation, an output node changes value, an event is scheduled for

the simulated time when the output is calculated to reach its new value. Processing an

event entails recomputing node values for subnets that have the changing node as an

input.

Internally, RSIM maintains a single event list where all unprocessed events are kept

in order of their scheduled time. When a node changes value, all other nodes which are

affected by that change are examined. For each affected node that changes value, the

simulated time of the change is computed and an event is added to the event list in the

appropriate place. The next event to be processed is then taken from the beginning

of the list, and the cycle repeats itself. A simulation step is considered complete when
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the event list is empty, i.e. when no more changes are pending.

3.1.2 The Concert Multiprocessor

Concert is a multiprocessor test bed desigrned to facilitate experimentation with

parallel programs and programming languages. It is organized as a ring of clusters,

with 4 to 8 Motorola MC68000 processors in each cluster, as shown in Figure 3.1.

The processors in each cluster commuIiicate via shared memory across a common bus,

although each processor has a private, high speed path to a block of local memory.

The clusters communicate via globally accessible memory across the RingBus. Each

processor therefore sees a three level hierarchy of memory:

1. high speed memory accessible over the processor's private "back door"

path (this memory is still accessible to other processors in the cluster via

the shared bus);

2. slower, non-local cluster memory accessible over the shared cluster bus;

3. global memory, accessible only through the RingBus.

All three levels of the hierarchy are mapped into the address space of each processor.

Therefore, the memory hierarchy can be treated transparently by the user program if

it is convenient to do so. Note that non-global cluster memory is not accessible from

the RingBus [2][71.

Over time, a large set of subroutine libraries have been developed for the Concert

system. One such library, the Level 0 Message Passing library, implements a reliable

message delivery system on top of the Concert shared memory system. For each proces-

sor there exists a message queue in global memory. To send a message, the LO system

copies the message body into global memory if it is not already there, and places a

pointer to the top of the message body into the receiving processor's queue. To receive

messages, the queue is polled on clock interrupts. Messages on the queue are removed

and returned to the user program by a user-supplied interrupt handler. The LO package

also provides a set of functions for sending and receiving messages.
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luster

Figure 3.1. The Concert Multiprocessor

The original RSIM program used floating point arithmetic for the Thevenin and

RC calculations. Concert has no floating point hardw•.±e, so it was felt that rather than

emulate the floating point arithmetic in software, it would be more efficient to use scaled

fixed point arithmetic. A 32-bit integer can represent a range of roughly 9 decimal

orders of magnitude, more than sufficient for the ranges of resistance, capacitance, and

time found in contemporary MOS simulation. The actual ranges of the units used by

PRSIM follow:
0.1f_ < R < 10OMfn

10- 6 pF < C < IOOpF

O.lnS <t < lOOmS

To represent the products and quotients of these units without loss of precision, a

scaled arithmetic package using 64-bit intermediate results was written. The routine

RCMul(R. C) computes the 64-bit product of a resistance and a capacitance, and then

divides by a constant scale factor to produce a 32-bit time quantity. The routine

MulDiv (A. B. C) multiplies any two 32-bit integers, and divides the 64-bit product by

a third 32-bit integer to yield a 32-bit result. This is useful for the Thevenin resistance

calculation. Finally, the routine CvtCond(R) converts a resistance to a conductance

"(and vice versa) by dividing its argument into a 64-bit constant to yield a scaled 32-bit
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resu!t.

3.2. The Organization of PRSIM

The PRSIM system consists of two phases: a prepass phase and a simulation phase.

The pr.pass phase is responsible for partitioning the network to be simulated and

for compiling the result into an efficient machine readable format. The simulation

phase itself can be further broken down into a coordinating program and a simulation

program. In an n node multiprocessor, 1 processor is dedicated to the user interface and

coordination functions, while the remaining n - 1 processors do the actual simulation

work. This organization is illustrated in Figure 3.2.

Slave

0E

Cmputeri

Figure 8.2. Structure of PRSIM

3.2.1 The Prepass Phase

The operation of PRSIM begins with the circuit to be simulated expressed in the

lisp-like description language NET [20]. t In the NET description the user may also spec-

ify the desired partitioning of the circuit. From this high level description, the PRESIM

"t At present, PRSIM has no automatic partitioning system. When such a mechanism is available,

PRSIM will also be able to simulate a circuit extracted from a mask level description.
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program, running on a conventional computer, first partitions the circuit into n - 1

pieces based upon the user's specification and the constraints imposed by the parallel

framework and the RSIM algorithm. Next, the dependencies between the partitions are

determined and the mapping tables used by each partition and by the coordinator are

constructed. Each output node of each partition is given a iist of partitions for which

that node is an input. Finally, n binary files are produced, one for each partition and

one for the coordinator.

3.2.2 The Coordinator

The coordinator attends to the administrative functions of the simulation. These

tasks include:

* loading the network files for each of the partitions from the host com-

puter;

* running the user interface to the simulator, including getting and setting

node values;

e starting, stopping, and resynchronizing the simulation.

The coordinator handles all input and output with the host computer. Upon ini-

tialization it searches out the active processors in the system and reads the coordinator

file generated by PRESIM from the host to obtain the number of partitions to be simu-

lated. For each circuit partition it assigns a processor from the active pool and passes

it the name of the appropriate network database file. Each slave processor is then re-

sponsible for reading the appropriate file by sending read requests to the host through

the coordinator.

PRSIM supports tWo different user interface languages: a simple line-at-a-time

command interpreter for simple operations, and a lisp-like language for more elaborate

control structures 1201. Through either of these interfaces the user may get and set

node values, examine the network structure, and start or stop the simulation.

Each node in the circuit is identified by a globally unique identifier, or node ID,

which is assigned during the prepass phase. The coordinator maintains a table of node

- 40 -



entry data structures, one for each node in the ci:cuit. This table can be referenced

in two different ways: indexed by global node ID, for mapping IDs into names for the

user; and hashed on the ASCII name of a node, for mapping the user specified ASCII

names into global node IDs. In addition to this two-way mapping, the node entry

structure also identifies the partition responsible for driving the node and contains a

list of partitions for which this node is an input. This information is used to permit

"" the user to examine and set node values.

When the user requests the value of a particular node, the ASCII name provided by
P

the user is first mapped into the corresponding node ID by the hash table. A message

requesting the value of the node is sent to the partition responsible for computing

that value. The partition then looks up the value of the node and sends back a reply

message. When the user wishes to set the value of a node, the coordinator sends the

driving partition a message containing the ID of the node, the new value for the node,

and the simulated time of the change. No reply is necessary.

To start a simulation step, the coordinator first establishes user supplied input

conditions by sending input change messages as necessary to the slave processors. When

all of the input changes have been established, the coordinator starts the simulation by

sending a STEP message containing the desired termination time to each slave processor.

When each processor reaches the specified stop time, it sends a SETTLED message back

to the coordinator and waits. Since a processor may be forced to -oll back after it has

reached the stop time, roll back notifications are sent to the coordinator as well. With

this information, the coordinator keeps track of the state of the simulation of each

partition. When it has determined that all of the slave processors have safely reached

the stop time, the coordinator sends a RESYNC message 'o each slave to inform it that

its old history is no longer needed and may be reclaimed.

In the current implementation the simulation is resynchronized only at the termi-

nation of each test vector. Since there is some overhead costs associated with starting

and stopping the simulation, the longer the simulation is allowed to run asynchronously,
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i.e., the longer the test vector, the less significant the overhead cost will be. However,

since checkpoint histories are only reclaimed at resynchronization time, the amount of

storage devouted to checkpointing becomes the factor which limits the length of the test

vectors. In future implementations, a mechanism for pruning old checkpoints together

with automatic resynchronization initiated by the coordinator could be used to extend

the length of the vectors.

3.2.3 The Simulation Slave

The simulation slave program is composed of three components: the simulation

loop; the interprocessor communication mechanism; and the history and roll back syn-

chronization mechanism. The simulation control loop is shown Figure 3.3. CurTime

is the current simulated time of the partition, and StopTime is the termination time

specified by the coordinator.

while Cu.rTime < StopTime
{ /* process events queued for CurTime */
for each event scheduled for CurTime

process event;
send queued output changes;
if time to checkpoint

checkpointO;
/* end -f phase one

/* process inputs queued for CurTime */
for each event scheduled for CurTime

process input;
/* end of phase two */
CurTime = CurTime + 1;

}

Figure 3.3. Simulation Control Loop

The processing of avents proceeds as follows. For each event scheduled for CurTime,

the event is removed from the list, the specified node change is made, and the effects

are propagated through the partition. If the node specified in the event is an output,

the event is added to the output change list. When all events scheduled for CurTime
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have been processed, one input change message is constructed for each partition which

is dependent upon one or more of the outputs in the list. Each message contains the

value of CurTime and the ID and new value of each node in the list which is an input

to the receiving partition. Once the input change messages have been sent, the output

change list is cleared, completing the first phase of the simulation. At this point, if

a sufficient period of time has elapsed since the last checkpoint, a new checkpoint is

taken (see Section 3.4 for more detail).

The operation of the second phase of the simulation is similar. For each input

change there is a data structure which contains the ID of the input node, the new

value, and the simulated time of the change. These structures are kept in the doubly

linked InputList sorted by simulated time. The NextInput pointer identifies the

next input change to be processed. For each input change scheduled for CurTime the

specified node change is made and the effects propagated through the network. After

each change is processed, the NextInput pointer is advanced. The InputList remains

intact.

By subdividing the simulation of a single time step into the two phases shown, and

by checkpointing at the end of the first phase, any roll back will restore the simulation to

the beginning of the second phase. Since the elapsed time between an input change and

any resulting event is non-zero, the simulation will converge in the manner described

in Chapter Two, although it may require several roll back operations.

3.3. Communication

There are two classes of interprocessor communication in the PRSIM system: ad-

ministrative communication with the coordinator for such purposes as loading the

partition data base and answering queries from the user; and interpartition communi-

cation required for sharing circuit nodes across multiple partitions. Both of these forms

of communication make use of a low level message management system which itself is

built upon the reliable message delivery protocol of the Concert Level 0 system.

Figure 3.4 shows the structure of a PRSIM message. The whole message consists
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Figure 3.4. PRSIM Message Structure

of two components: a Level 0 header, which is used by the Concert Level 0 software,

and the PRSIM message itself. The PRSIM message is further composed of a message

header and a body. This header contains two links for the doubly linked active message

list; a request ID for matching replies to synchronous requests; an opcode field which

identifies the type of message; a size field which determines the length of the message;

and finally the message body, which contains the data. Message bodies are a multiple

of 16 bytes in length, up to a maximum of 1024 bytes. The body size of a message

is determined when the buffer for the message is first allocated. When a message has

finished its task, its buffer is returned to a free list managed by the sending processor,

from which it may be reallocated later. To avoid searching one free list for a buffer

of a certain length, there are 64 separate free lists, one for each possible message size.

Messages of the same size are returned to the same free list. A complete list of PRSIM

messages appears in Appendix A.

To send a message, a processor obtains a buffer of the appropriate size from the free

list, allocating a new one if necessary, and fills in the body. Next, the busy flag in the

Level 0 header is set and the message is added to the active list. Finally, the message
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is placed in the receiving processor's Level 0 queue, and the sending processor returns

to whatever it was doing. At the receiving end, during clock interrupts and when the

processor is idle, an interrupt handler polls the Level 0 queue for that processor. If

2 there are any new messages, they are removed from the Level 0 queue and added to

an internal message queue, which the program itself polls at convenient intervals. This

internal message queue serves to isolate the "user level" program (coordinator or slave)

from the "interrupt level" message handling, and allows the program to synchronize

message processing with its own internal operation. To process a message, the user

program removes it from the internal queue and dispatches on the Opcode field to the

appropriate handler routine. When the handler is finished, it clears the busy flag in

the message and returns. The sending program periodically searches through its list of

active messages, reclaiming those that are no longer in use.

On top of the non-blocking message passing mechanism described above, a simple

synchronous request/reply scheme was implemented. This feature is used primarily

for debugging purposes and to answer queries from the user. For example, the slave

processors use this mechanism to obtain the ASCII name of a node from the coordinator

when printing debugging information. The RequestID field of the message is used to

match incoming replies with outstanding requests. All other messages are left in the

queue unprocessed until all pending requests have received replies.

3.4. History Mechanism

Chapter Two discussed the requirements the history maintenance mechanism must

meet. These are summarized below.

* The checkpoint must contain all of the information necessary to com-

pletely and atomically transform one consistent simulation state to an-

other. There must be no period in which inconsistent results may be

given.

* It must be possible to make forward progress under all possible circum-

stances. This does not imply we must make forward progress after every
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roll back, but eventually the simulation must converge.

In addition to meeting the above constraints, we would like the history mechanism to

be efficient in both time and memory, as these costs represent part of the overhead

associated with parallel execution.

3.4.1 Simulation Swate Infcrmation

We can take advantage of the nature of the simulation algorithm to minimize the

amount of state information that must be checkpointed. As shown in Chapter Two,

this information includes the internal state of the circuit, the state of externally applied

inputs, and the state of the algorithm itself. The state of the circuit consists of the

logic state of each node in the network. The history of externally driven node values

comes for free by maintaining the input list throughout the simulation. The state of

the simulation algorithm consists of the contents of the event lists and the current

simulated time. Since checkpointing and roll back occur only at specified places in the

slave program, no other process state (i.e., the stack) need be saved.

All of the state information is kept in a data structure known as the checkpoint

structure. The list of extant checkpoint structures is kept sorted by simulated time.

The data structure contains a time stamp to identify the simulated time the checkpoint

was taken, an array of pointers to the saved event lists, and an array of node values.

The procedure for filling the checkpoint structure is described below.

1. Allocate a new checkpoint data structure. Mark it with the current

simulated time and add it to the end of the checkpoint list.

2. Make a copy of each event in the event wheel and add it to the appropriate

list in the checkpoint structure's event array.

3. Visit each node in the network, recording its value in the node Array of

the checkpoint structure.

For each node in the network, the checkpoint procedure must record its state (0,

1, or X) and whether the user has declared it to be an input. Therefore, three bits
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of information are needed to completely specify the state of a node. For the sake of

simplicity and performance, two nodes are packed into each byte of the node array

(it would be more storage efficient but slower to store 5 nodes per 16-bit word). The

procedure to checkpoint the state of the network is shown in Figure 3.5.

/* Array is the node array of the checkpoint structure */
CkptNetwork(Array)

char *Array;
{int Index := 0;

for each node in the network, n
{ /* Even nodes are put in low order nibble */

if Index is even
f Array[Index] := Node'Jalue(n);

if n is an input
Array[Index] Array[Index] ORed with Ox04;

/* Odd nodes are put in high order nibble */
else

{ Array[Index] := Array[Index] ORed with
NodeValue(n) shifted left by 4 bits;

if n is an input
Array[Index] Array[Index] ORed with Ox40;

Index++;
}

}
}

Figure 8.5. Checkpointing the Network State

3.4.2 Checkpoint Strategy

In Chapter 2 we discussed a strategy to vary the frequency of checkpointing to

achieve both a high density of checkpoints in the vicinity of communication clusters,

and a low average overhead when the simulation is well balanced. To this end, we

define a checkpoint cycle to be the set of checkpoints between any pair of occurren:ces

of resynchronization or roll back.

Figure 3.6 demonstrates the strategy chosen. The checkpoint cycle begins at time

t0 . The checkpoints are indicated by Xs. If this cycle was initiated by a resynchroniza-
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Figure 3.6. Checkpoint Distribution

tion, a checkpoint is taken at to to guarantee the simulation can be rolled back to its

initial state. if the cycle was initiated by a roll back to to, the checkpoint at to is still

valid, so no new checkpoint is taken. In either case, the state is then r-heckpointed at

each succeeding time step for the next three steps, ensuring forward progress will be

made. At time tl the period increases to two steps, at t 2 the period increases to four

steps, and so on. The period increases in this fashion to a maximum period of 1024

time steps. Both the time constant and the final value of the exponential were chosen

empirically.

3.5. Roll Back Mechanism

The queue of incoming messages is examined at the end of the first phase of the

simulation loop. If there are any input change messages pending, they are removed from

the queue and processed. For each entry in each message, an input change structure

is inserted into the input list at a place specified by the simulated time contained in

the message. Let to be the simulated time specified in the earliest pending message. If

CurTime< to, no further action is taken. If CurTime> to, the processor must stop the

simulation and roll back. To roll back, the processor walks back through the checkpoint

list to find the latest checkpoint taken at a time t, • to. Each node of the partition

is visited and its value restored from the node array of the checkpoint structure. All

events currently on the event lists are thrown away, and the event lists in the checkpoint

structure are copied into their places. The NextInput pointer is moved back through

the input change list to point to the next change at time ti > t,. A foil back notification

message is sent to the coordinator and to all other partitions dependent upon this one.

Finally, all checkpoin.sý ,aken after t. are reclaimed for later use (added to a free list).

Details of the roll back operation are shown in Figure 3.7. The RestoreNetwork routine
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/* Roll the simulation back to a time before t and restore
* the state from event checkpoint and node history lists
*/

RollBack(t)
int t;
{ struct checkpoint *ctmp;

/* find closest checkpoint to roll back time t */
ctmp := last element of CkptList;
while time of ctmp > t

ctmp previous element of CkptList;
CurTime time of ctmp;
/* walk the network restoring node values */
RestoreNetwork~ctmp);

/* restore event array and overflow list */
RestoreEvents(ctmp);
/* back up next input pointer */
while scheduled time of NextInput _> CurTime

NextInput := previous element of InputList;

/* Roll back notification to anyone who cares */
for each partition in dependent liet

send roll back notification;

/* garbage collect old checkpoints */
for each checkpoint in CkptList > CurTime

{ remove from CkptList;
place on FreeCkptList;

}

Figure 3.7. Roll Back Procedure

is similar to the CkptNetwork routine discussed earlier.

When processor Pi receives notification that processor Pj rolled back to time to,

Pi must clean up its act to reflect the new knowledge about the state of Pj. If Pi has

no record of input changes from Pj which are dated more recently than to, nothing

need be done. If Pi has changes from Pj more recent than to, those changes are spliced

out of the input list. If Pi has not processed any of those changes (i.e. the earliest

change Is scheduled for a time > CurTimei), no further action is taken. If, however,

Pi has already processed at least one of the changes, the results of those changes must

be undone. Pi must therefore roll back to a time preceding the earliest of the invalid
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changes. Note that Pi need not be rolled all the way back to to, but only far enough

to undo the effects of false changes from P1. Any new changes from P1 will explicitly

force Pi to roll back. This response is shown in more detail in Figure 3.8. The history

and roll back mechanisms are presented in Appendix B.

/* Respond to Roll Back Notification fhorn processor P at time t *\
HandleNotify(P. t)

{int earliest;
struct Input *in;
/* walk backward from end of InputList to remove inputs from P */
in := last element of InputList;
while scheduled time of in > t do

{if in came from processor P
{earliest := scheduled time of in;

remove in from InputList;
}

in previous element of InputList;
}

/* Roll back to earliest, if necessary */
if (CurTime > earliest)

RollBack(earliest);

Figure 3.8. Response to Roll Back Notification

3.6. Summary

PRSIM is a logic level simulator based upon the RSIM algorithm which takes ad-

vantage of the locality of circuit operation to achieve parallelism. Interprocessor syn-
A

chronization is accomplished through the history r-aintenance and roll back technique

presented in Chapter Two. PRSIM makes few demands upon the underlying parallel

architecture. It requires a reliable, order preserving message delivery substrate for

communication. There is no need for shared memory, or special hardware for float-

ing point arithmetic or memory management. The current implementation of PRSIM

has no automatic partitioning mechanism. The designer must specify the partitioning

before simulation.
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The kernel of the original RSIM program (excluding user interface) consists of

approximately 1430 lines of C code. The simulation slave portion of PRSIM, including

message handling, contains approximately 2800 lines of C code, or roughly double the

original size. Of the 2800 lines, approximately 450 lines are dedicated to the history

maintenance and roll back features, while message handling, file I/O, and debugging

account for the rest. There are about 800 lines of code dedicated to the coordinator's

administrative functions (excluding user interface), split roughly evenly between file

I/O and message management.
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Chapter IV

Results

A preliminary set of experiments were designed and run to determine the perfor-

mance of the PRSIM implementation. The first set of experiments were designed to

measure the overall performance of PRSIM, with special emphasis on the scaling behav-

ior. To completely unC erstand the results of these experiments, extensive performance

monitoring facilities were added, and a second set of experiments run. This chapter

presents and discusses the results from those two sets of experiments.

4.1. Overall Performance

4.1.1 Experimental Procedure

To determine the scaling behavior of PRSIM, a set of identical simulations were

run with a varying number of processors. The set of simulations is composed of one

test circuit and a large number of randomly generated test vectors. The experiments

consisted of simulating all of the vectors on each of a number of partitionings of the

test circuit.

The number of essential events for a given circuit and set of test vectors is defined r
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to be the number of events processed in a uniprocessor simulation. This set of events is

the standard by which multiprocessor simulations are judged. Therefore, the number

of essential events processed per second of run time is a measure of the useful (non-

redundant) work performed. This is the metric by which the overall performance of

the parallel simulator is measured. To obtain these values, it is necessary to count

the number of events processed in the one partition experiment, and the amount of

time elapsed during the simulation of each vector in each experiment. Elapsed time is

measured in units of clock ticks, where one clock tick ; 16.2mSec.

The scaling behavior is most easily expressed in terms of the effective speedup

factor obtained from a given number of processors. The speedup factor for N processors

is defined to be:

Speedup t(N)

where t(N) is the time taken to run a given experiment on N processors. The extra

simulation incurred as a result of roll back can be expressed in terms of the simulation

efficiency, which is defined to be:

No. of events(l)
N= o. of events(N)

where No. of Events(N) is the number of events processed in an N partition experi-

ment.

The test circuit is a 64-bit adder, using a dynamic logic CMOS technology. The

adder uses a look ahead carry mechanism for groups of four bits, as shown in Figure 4.1.

The dynamic logic is clocked by a two phase clock, supplied externally. The carry out

signal from each group is rippled into the next most significant group of the adder.

Because the dynamic logic in the carry look ahead block is highly connected, the adder

will be partitioned along the four bit group boundaries. The only communication

between the partitions consists of the carry chain. The adder contains a total of 2688

transistors and 1540 nodes. There are 1328 N-type transistors, 1360 P-type transistors.

Each 4-bit slice contains 168 transLtnrs, and 96 nodes.
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Figure 4.1. 4-Bit Slice of Adder Circuit

Experiments were run with the test circuit partitioned into 1, 2, 3, 4, and 6

partitions. The organization of each partition is shown in Figure 4.2. The marks

across the top indicate groups of four bits. In each experiment, all of the partitions are

of equal length except the six partition case, where the first two partitions contain 8

bits each, while the rest contain 12 bits. Random test vectors of varying length were

used. The lengths ranged from 2 to 24 clock cycles, with four sets of vectors in each

length.

4.1.2 Results

A summary of the raw performance data is shown in Table 4.3. The complete

results are presented in Appendix C. Table 4.3 shows the average performance of PRSIM

"in essential events per second as a function of both the length of the t.est vector and

." the number of processors. There are a number of discrepancies from what might be

considered ideal behavior. The first is the decline in raw performance of the one
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0 15 16 31 32 47 48 63

1 Partition 1

2 Partition 1 Partition 2

3 Partl Part2 Part3

4 Partl Part2 Part3 Part4

6 Parti1 Part 2 Part 3 Part 4 Part 5 Part 6

Figure 4.2. Adder Partitioning

partition experiment as the length of the test vector increases. This is attributed

to the cost of reclaiming the checkpoint data structures upon resynchronization. Since

each checkpoint contains an arbitrary number of events, it necessary to waik the length

of the checkpoint list when reclaiming, incurring a cost proportional to the length of

the list.

Number of Processors

Length 1 2 3 4 6

2 46.45 81.09 107.62 134.50 151.52
4 44.55 80.60 108.10 129.36 166.41
6 42.95 76.25 98.99 136.56 170.93
8 41.39 76.87 100.72 126.25 155.75

12 40.62 78.32 105.45 126.42 159.19
16 38.86 75.65 96.08 126.49 152.9724 37.66 74.94 94.24 NA 145.48

"Table 4.3. Raw Performance Results in Events/Second

N ___ Speedup

1 1.000 1.00
2 0.991 1.86
3 0.967 2.43
4 0.937 3.11
6 0.951 3J7

Table 4.4. Simulation Efficiency and Speedup Factor

Table 4.4 shows the average simulation efficiency and the speedup factor as a
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function of the number of processors. Table 4.4 demonstrates that the simulation

efficiency is relatively unaffected by the number of partitions. This indicates a bth high

degree of decoupling between the partitions, with a corresponding low occurance of roll

back, and a even balance in simulation load, which is consistent with the partitioning

chosen.

4

3
Speedup

Factor
2

Number of Paititions

Figure 4.5. Speedup Factor Versus Number of Partitions

The speedup factor results are somewhat more interesting. Figure 4.5 presents a

plot of the speedup as a function of the number of partitions. With six processors,

a performance improvement of only 3.77 is achieved. The performance increases less

than linearly with the number of t rocessors. Clearly, the small decrease 11_- simulation

efficiency is not the dominant factor. To understand this phenomenon, more detailed

information is required.

4.2. Profiling Results

To understand the performance behavior of PRSIM, it is necessary to build a de-

tailed model of the costs associated with the various functions. In particular, we need

to know the following information:

1. Impact of the partitioning - How well balanced is the simulation load?

How much interprocessor communication is there?
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2. Synchronization costs - How much time is spent maintaining the check-

point lists? How expensive is the roll back operation?

3. Communication costs - How expensive is message handling? How much

of that cost is associated with the low level implementation?

To obtain this information, a statistical profiling scheme similar to that of Version 7

UNIXt was implemented for the simulation slave program.

4.2.1 Experimental Procedure

The profiling scheme collects the number of calls to every subroutine in each sim-

ulation slave and total amount of time spent in each subroutine. This information is

sufficient to determine the percentage of the total time that is spent in each subroutine,

and the average length of time spent per subroutine call.

When the program starts up, a table to contain the subroutine call information is

built. Each line of the tabie contains a pointer to the entry point of one subroutine, and

the count of the number of times that routine has been called. Each subroutine contains

a pointer to the corresponding table entry. The compiler automatically inserts code
at the beginning of every subroutine to manipulate the count table. When the routine

is first called, it is linked into the table. On each succeeding call, the corresponding

counter in the table is incremented. When the program exits, the table is written into

a file to be interpreted later.

A statistical averaging technique is used to determine the amount of time spent

in each subroutine of the program. A table of program counter ranges is maintained

in which each entry represents the number of times the sampled program counter lay

within a given 8 byte range. At every clock interrupt (once every 16mSec.), the program

counter is sampled, the value shifted right 3 bits, and used as an index into the array.
The indexed table entry is then incremented. When the program exits, the table is

written into a file to be interpreted later. By taking a sufficiently large number of

t UNIX is a trademark of Bell Laboratories.
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samples, we can obtain a fairly accurate profile of the amount of time spent in each

subroutine.

Profiling data was gathered for the six partition experiment described above. Five

sets of test vectors, each of length 16, were run. To provide a sufficiently large sample,

each vector was simulated ten times. Therefore, the sample consists of 800 simulated

clock cycles of 200nSec. each, or 1601Sec. of simulated time. Each vector generates

roughly 18,000 essential events, for a total of approximately 850,000 events in the

sample.

Profiling is enabled by the coordinator immediately before the input vectors are

established, and disabled immediately after each resynchronization. Therefore, the

profiling data does not include time spent in the user interface.

4.2.2 Results

The complete results of the profiling experiment appear in Appendix D. Table 4.6

summarizes the percentage of idle time recorded by each processor (time spent in the

routine step). The idle time is the sum of the time elapsed between reaching the

specified stop time and the subsequent resynchronization or roll back. The high idle

times of partitions #1 and #2 are the result of the relative partition sizes: partitions

#1 and #2 contain 8 bits each, while the rest contain 12 bits. The decrease in the idle

times from partition #3 to #6 follows the communication through the carry chain: the

further down the chain, the longer it takes to settle.

The speedup results reported earlier can now be explained. The expected speedup

". for N processors cart be expressed as:

"Speedup =NY7,ip

where ip is the processor utilization factor. For the six partition experiment, we obtain

an expected speedup of 4.03. The non-linearity of the curve can be explained by 11p

decreasing as the number of partitions is increased.
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Partition % Idle

50.04
2 E,27
3 28.99
4 21.67
5 16.13

I 6 3.80
Total 29.14

Table 4.6. Idle Time per Partition

Table 4.7 shows a break down of where the active (non-idle) time was spent by

each partition. The figures are percentages of the total active time of each partition.

The data is divided into three categories of activity a-. follows:

Simulation: the time spent in the RSIM simulation algorithm itself. This is subdi-

vided as follows:

Arithmetic: the time spent in the scaled fixed point arithmetic routines.

Other: all other aspects of the RSIM algorithm.

History: the time which may be attributed to the roll back synchronization scheme.

This is subdivided as follows:

Checkpoint: the time spent creating and maintaining the state checkpoints.
Roll Back: the time spent restoring the state upon roll back.

Communication: the time associated with interprocessor communication. This is

subdivided as follows:

System Level: the time spent polling and manipulating the interrupt level

message queues.

User Level: the time spent constructing and handling messages at the user

level.

Table 4.7 shows the amount of time spent in overhead is relatively small; nearly

90% of the active time is spent in the simulation algorithm, most of that in the fixed

point routines. The overhead time is dominated by the communication, and not ",w the

history mechanism. Only in partition # 2, which had a relatively high incidence of roll
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Partition Number

lunction 1 2 3 4 5 6 Total

Simulation
Arithmetic 60.43 58.17 63.63 64.18 64.05 653 38 63.07
Other 25.94 25.07 25.16 25.19 25.71 2E.17 25.35
Total 86.37 83.24 88.79 89.37 89.76 90.25 88.42

History
Checkpoint 2.93 5.68 2.47 2.64 2.54 2.70 3.01
Roll Back 0.00 0.30 0.00 0.05 0.05 0.07 0.07
Total 2.93 5.U, 2.47 2.69 2.59 2.77 3,08

Communication
System Level 3.56 3.57 2.54 2.31 2.22 1.98 2.57
User Level 7.14 7.21 6.20 5.63 5.43 5.00 5.93
TotW 10.70 10.78 8.74 7.94 7.65 6.98 8.50

Tabsle 4.7. Breakdown of Time Spent by Function

back, is the checkpointing overhead non-negligable.

4.3. Discussion

There are two important conclusions that can be reached from the results reported

in this chapter. First, the circuit partitioning has a significant impact on the scaling

performance of the simulator. The dominant effect, at least in the small test case

reported here, is not the overhead associated with communication or synchronization,

but is the dynamic load balance. Even though the test circuit was statically well

partitioned, the dynamic behavior resulted in only about 70% processor utilization

with six partitions. Decreasing processor utilization resulted in "diminishing returns"

in the speedup factor, as shown in Figure 4.5.

The second conclusion is that the results reported are inconclusive. Because the

active time was so completely dominated by the simulation lead, it is difficult to build

any detailed models of the overhead costs associated with the history and roll back

mechanisms. The test circuit was too small and too regular to exhibit much interesting

behavior. Somewhat better results could perhaps have been achieved by running much

longer test vectors. Unfortunately, the current implementation of PRSIM is severely

memory bound. If automatic resynchronization were employed to limit the storage
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required for history maintenance, larger experiments could be performed.
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Chapter V

Conclusion

5.1. Summary

Integrated circuit technology has been advancing at a phenomenal rate over the

last several years, and promises to continue to do so for the foreseeable future. If

circuit design is to keep pace with fabrication technology, radically new approaches

to compater-aided design will be necessary. This thesis has explored the problems

of capacity QirAtation in existing simulation tools, and has sought to develop a new

approach to building fast, scalable circuit simulators.

We began by examining the locality inherent in digital circuit operation. Digital

circuit elements operate on local information, producing local results. It was observed

that there exists a class of simulation algorithms which exhibit a similar locality prop-

erty. Therefore, we set out to develop a framework for circuit simulation which could

take advantage of this locality to achieve a high degree of parallelism. The scheme we

developed involved mapping the circuit to be simulated onto tie topology of the target

multiprocessor to take advantage of the natural structure of the circuit. We explored
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the problrms associated with the precedence constraints imposed by the partitioning.

We discovered that many of these problems could be avoided by inserting buffers be-

tween the partitions, effectively decoupling them. This lead to the development of a

synchronization mechanism based upon history maintenance and roll back. By peri-

odica!.ly saving the state of the simulation, each partition •an be allowed to simulate

asynchronously with respect to the others, rolling back the simulat:.on if necessary to

correct for inpu• changes. This solution was demonstrated to be sufficient to guar-

antee convergence in the presence of feedback. We then discussed the importance of.

the strategy used to p•tition the circuit, and exgued that static graph partitioning

techniques may not be adequate. Finally, we quickly reviewed some related research,

with emphasis on the relationship to the work report in this thesis.

To determine the merit of the ideas presented in Chapter Two, a circuit simu-

lator, PRSIM, was designed and built. Chapter Three discussed the details of that

implementation. The chapter began with an overview of the RSIM simulator and the

Concert multiprocessor on which PRSIM is based. RSIM was chosen as the vehicle for

this implementation because it is an event driven simulator which exhibits the locality

properties discussed in Chapter Two. PRSIM is organized into three components: the

prepass phase, which is responsible for partitioning the circuit; the coordinator, which

is responsible for attending to the administrative functions, such as file I//O and in-

terracing to the user; and the simulation slave, which performs the actual work of the

RSIM algorithm. We discussed the organization of the simulation control loop, which

is decomposed into two phases: an event procecsing phase, and an input processing

phase. This two phase organization, together with the variable checkpointing stratet•p/,

is sufficient to guarantee convergent.e accordin• to the argument presented in ChRp•.r

Two. All interprocessor commdnication is implemented by a sirnp!e• non-blocking mes-

sage passing mechanism, built on top of the Concert Level 0 message passin• protocol.

Some optimizations were made in light of" the fact that Concert is a tigiltly coupled

multiproceasor system, but the essential mechanism does not rely upon shared memory.
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Finally, the history maintenance and roll back algorithms were presented in detail.

A preliminary set of experiments were run to determine the scaling behavior of

PRSIM. The experiments were organized into two sets. The first set was designed

to measure the overall perfoimance of PRSIM, while the second set was designed to

obtain detailed information about the internal behavior of PRSIM. From the first set, we

learned that the performance increased by nearly a factor of 2 in going from one to two

partitions, but that beyond two there was a "diminishing returns" phenomena. From

the profiling experiments of the second set, we discovered the cause of this behavior

was the processor utilization decreased as the circuit wa; partitioned into finer and

finer pieces. The profiling experiments .lso revealed that lesh than 12% of the active

processing time was spent in overhead associated with parallel execution. Although

this result was somewhat encouraging, it made it nearly impossible to develop models

of the overhead costu and scaling behavior. The conclusion derived from these results

is that the partitioning strategy is very important, and requires further research.

5.2. Directions for Future Research

The results reported in this thesis suggest several avenues for future research. One

of the most i•erious problems encountered was the bound on the length of the simulation

"which resulted from the memory requirements of checkpointing. This suggests the need

for automatic resynchronization: reclaiming old state once it can be guaranteed that no

partition can be forced to roll back beyond a certain point. This will require additional

communication to coordinate the checkpointing, but is probably cost effective in the

long run.

The checkpointing strategy that was implemented was based upon empirical results

with arbitrarily chosen parameters. One direction for future work is to develop formal

statistical models for the communication behavior of digital circuits. These models

could then be used to optimize the checkpointing strategy for a particular circuit, either

statically at partition time, or dynamically based upon the communication patterns

observed.
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Perhaps the most important issue raised is the problem of effective network parti-

tioning. It would be interesting to explore the limits of static partitioning algorithms.

Ultimately, however, it will probably be necessary to turn to some form of dynamic

partitioning. Two quantities determine the performance of a given partitioning: the

amount of useful simulation work accomplished by each partition, and the amount of

communication among the partitions. A dynamic partitioning strategy should try to

. balance the first quantity, while minimizing the second. We can view the level of activity
in a partition as a "temperature". As the activity (simulation work and communica-

tion) increases, the temperature rises. The goal of dynamic partitioning is to achieve a

low, uniform temperature across the multiprocessor. Periodically, the temperature of

each partition should be sampled, and atomic units from hotter partitions moved into

adjacent, cooler partitions, following the temperature gradient. If the fluctuations in

temperature have a very short time constant (on the order of a single clock cycle), it

may only be necessary to repartition once or twice near the beginning of a simulation.

The framework that we have described does not rely upon the memory architecture

of any particu-ar multiprocessor. It is intriguing to consider the possibility of a simula-

tion spread among a loosely coupled collection of machines. For example, it should be

possible to build a simulator which locates idle machines on a local area network, and

dispatches pieces of the simulation load to them. To determine the viability of this idea,

we need a better understanding of the sensitivity of our approach to message latency.

A series of experiments can be performed with the current PRSIM implementation in

which the message delivery latency is varied by the sending processor.

A great deal of the active run time of PRSIM was spent in the fixed point arithmetic

package. Although not directly related to the field of parallel simulation, this problem

suggested the construction of an assigned delay simulator. The prepass phase of such a

simulator would construct a table of transition delays for each node in the circuit using

the RSIM (or any other) model. Having thus precomputed the delays for every node in

the circuit, at run time the simulator need only perform a table look up to schedule an
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event.

-,5.3. Conclusion

We have presented an approach to parallel simulation which is based upon the

inherent parallelism of circuit operation. The initial implementation of PRSIM demon-

strates that history maintenance and roll back is a viable solution to interprocessor

synchronization in this context. Much work remains to be done, however, to determine

whether this approach can indeed be scaled to an arbitrary number of processors.
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Appendix A

PRSIM Messages

The following is a list of the message types used by PRSIM. The entry for each mis-

sage contains the name of the message, the purpose of the message, and the information

contained in the body. The messages are divided into three groups: coordination of

the simulation; file I/O with the host computer; and support for the user interface.

The following group of messages support the coordination of the simulation activity.

LOAD-NETWORK

The LOAD-NETWORK message is sent from the coordinator to each simulation

slave upon initialization. This message contains the number of partitions in

the simulation, the partition ID for the receiving processor, the table to map

partition numbers to processor numbers, and the name of the partition file

"on the host computer.

LOAD-NETWORK REPLY

The LOAD-NETWORK REPLY message is sent by each slave to the coordinator

upon the completion of the network initialization. The body is empty.
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SETNODE

The SETNODE message is sent to a slave to inform it of external node changes.

The body contains the simulated time the change took place, and a list of

(node ID, new value) pairs.

STEP

The STEP message is sent from the coordinator to all slave processors to

initiate a simulation step. The body contains the simulated time the step is

to terminate.

SETTLED

The SETTLED message is sent from a slave to the coordinator to notify it that
the slave has reached the specified termination time. The body contains the

partition number of the sender.

ROLLBACK

The ROLLBACK message is sent from a slave to the coordinator and all depen-

dent partitions to notify them that the slave has rolled back its simulation.

The body of this message contains partition number of the sender, and the

simulated time the partit'on rolled bhck Lo.

RESYNC

The RESYNC message is sent 4irom the coordinator to all slave processors

to inform them the simulation has settlcd. The slave processor6 -,-e this

information to reclaim the storage in the checkpoint and input lists. The

body of this message is empty.

The following group of messages implements remote file access.

FOPEN

The FOPEN message is a request from a slave to the coordinator to open the

named file on the host computer. Only one open file is allowed at any one
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time. The body contains the host file name and the access mode (e.g., read

or write).

FOPEN REPLY

The FOPEN REPLY message informs the slave the requested file is open and

ready for use. The body contains a single integer reflecting the result of the

open operation: a 0 indicates a successful open, a -1 indicates an error.

FREAD

The FREAD message is a request from a slave to the coordinater to zead a

block of data from the open file. The body contains the number of items

to be read, and the size of each item. A maximum of 1024 bytes may be

requested.

FREAD REPLY

The FREAD REPLY message contains the data requested by a FREAD message.

The body contains the number of items read and the data read.

FWRITE

The FWRITE message is a request from a slave to the coordinator to write a

block of data to the open file. The body contains the number of items to be

written, the size of each item, and the data to be written.

FWRITE REPLY

The FWRITE REPLY message reports the result of a FWRITE message. The

body contains an integer error value which is 0 if the write was successful,

-1 if the write failed.

FCLOSE

The FCLOSE message is a request from a slave to the coordinator to close the

opened file. No reply is necessary.
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The following group of messages support the user interface.

PRINTF

The PRINTF message is sent by a slave processor to the coordinator to print an
arbitrary string on the user's console. The body contains the null terminated

ASCII string to be printed. The coordinator prefixes the partition ID of the

slave to the string before printing.

GETNODE

The GETNODE message is a request by the coordinator to obtain the current

value of a given node from a slave. The body contains the global ID of the

node.

GETNODE REPLY

The GETNODE REPLY message is the reply from a slave to the coordinator to

a GETNODE request. The body contains the value of the requested node

NODE-INFO

The NODE-INFO message is a request by the coordinator to obtain connectiv-

ity information about a node within the network. This message is originally

sent to the slave responsible for driving the node. This slave prints its rel-

evant information for the user (via PRINTF messages), and then forwards

the NODE-INFO message to any adjacent partitions. Each adjacent partition

sends its information directly back to the coordinator in the form of PRINTF

messages, and then replies to the forwarding slave. When all adjacent parti-

tions have replied, the forwarding slave replies to the coordinator. The body

of thc NODE-INFO message contains the global ID of the requested node and

the type of information requested.

NODE-INFO REPLY

The NODE-INFO REPLY message is sent by a slave partition to the processor
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which requested NODE-INFO, after all of the information has been printed.

The body contains the partition ID.

TRACE-NODE

The TRACE-NODE message is sent by the coordinator to enable activity trac-

ing for a particular node. The body contains the global ID of the node to

be traced. The receiving partition sets a flag in the specified node to enable

tracing. Whenever a traced node changes value, a notice is printed on the

user's console.

UNTRACE-NODE
The UNTRACE-NODE message is sent by the coordinator to cancel activity

tracin- 4or a particular node. The body contains the global ID of the node.

GETNAME

The GETNAME message is sent by a slave processor to the coordinator to

request the ASCII name of a given node. The body contains the global ID of

the node. This message is used when printing node information on the user's

console.

GETNAME REPLY

The GETNAME REPLY message is the coordinator's reply to the GETNAME

message. The body contains a null terminated ASCII string representing the

name of the requested node.

DEBUG-LEVEL

The DEBUG-LEVEL message is sent from the coordinator to all slave processors

to set the debug level. The value in the body determines the type and quantity

of debugging information to display. There is no reply.
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ENABLEPROFILE

The ENABLE-PROFILE message is sent from the coordinator to all slave pro-

cessors to enable the performance monitoring software. The body is empty,

and there is no reply.

DISABLEPROFILE

The DISABLE-PROFILE message is sent from the c3ordinator to all slave pro-

cessors to disable the performance monitoring software. The body is empty,

and there is no reply.

-74-



L

Appendix B

History Implementation

/* This file contains the implementation of tho history
* maintenance and roll back mechanisms of PRSIM,.

* A few globally defined structures are reproduced below.
*/

/* Useful data structures */

struct Event { /* the structure of an event */
evptr flink,blink; /t doubly-linked event list */L
nptr enode; /* node this event is all about */
long ntime; /* time, in DELTAs, of this event */
char eval; /* new value */
char type; /* type of event */

struct Checkpt /* the structure of a checkpoint */
{ ckptr flink, blink; /* double li:,ked list checkpoint list */

long ctime; /* time checkpoint was taken */
int ev-index; /* index into event array */
struct Event *event[TSIZE]; /* copy of event array */
struct Event *overflow; /* copy of overflow event list */
char *svect; /* pointer to node state table */

struct Input { /* linked list of inputs */
iptr next; /* next element of list */
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nptr imode; /* pointer to this input node */

/* For convenience, pointers are abbreviated as follows */
typedef struct Event *iptr; /* event pointer */
typedef struct Evckpt *ckptr; /* checkpoint pointer */

typedef struct Input *iptr; /* input pointer */

/* Routine to checkpoint the state of the simulation
* Note that the checkpointed event array k overflow list are stored more

* compactly than the originals.
*/

checkpoint ()
{ register ckptr ctmp;

register evptr etmp, ev, ev.base;

register mut i. j;

char *ptr;

/* get a ckpt structure from free list, allocating more if neccessary */
iU ((ctmp = ck-free) == NULL)

{ ctmp = (ckptr)al_bytes(iO * sizeof(struct Evckpt));

ptr = (char *)al_byter(numsiO);

for Ui = 10; -- i > 0; ctmp++)
{ ctmp->flink = ckfree;

ck-free = ctmp;

ctmp->svect = ptr;
P+r ÷= nums;

ctmp->svect = ptr;

else ck-free = ctmp->f link;

/* add new ckpt struct to list of checkpoints */
ctmp->flink = kck-list;

ctmp->blink = ck-list.blink;

ck-list.blink->f link = ctmp;

ck-list.blink = ctmp;

/* copy event array into ckpt struct */
for (i = 0; i < TSIZE; i++) /* loop over lists in array */

{ ev.base = &ev-array[i];
ev = ev.base;

ctmp->event[i] = NULL;
if (ev->flink == ev) /* if it's empty, do nothing */

continue;

while ((ev = ev->flink) 1= ev.base) /* loop over each event in list */

/* allocate event struct */
{ if ((etap = evfree) == NULL)
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{ .mp =(evptr)al-bytes(10 sizeof(struct Event));
for (Q = 10; --j > 0; etmp++)

{etmp->f link = evfree;
evfree = etmp;

else evfree =etmp->f link;

/* copy contents of old (ev) to new event *
etmp->3node = ev->enode;
etmp->ntime = ev->ntime;
etmp->eval = ev->ev&i.;
etmp->type = ev->type;

/* add new event to checkpoint event array *
if (ctmp->event~il == NULL)

etmp->f link = etmp->blink = ctmp->event~iJ .bmp;
else

{ tmp->f link = ctmp->event (iJ;
etmp->blink = ctmp- >event [i] ->blink;
ctmp->event Cil- >blink- >f link = .mp;
ctmp- >event [i] ->blink =etmp;

/* copy overflow array into ckpt struct *
ev =&overf low;
ctmp->overf low = NULL;
if (ev->f link 1= ev)

while C(ev = ev->f link) I= koverf low)
/* allocate event structure *

{if ((.bmp =evfree) NULL)
{ .mp =(evptr)al-bytes(I0 * sizeof (struct Event));
for Qj = 10; --j > 0; etmp++)

{ tmp->flirik = evfree;
evfree = .bmp;

else evfree = etmp->f link;
/* copy contents of old (ev) to new event *

etmp->enode = ev-'>enode;
etmp->n~time = ev'->ntime;
etmp->eval = ev->eval;
etmp->typa = ev->type;

/* add new event to checkpoint event array *
if Cctmp->overf low ==NULL)

etmp->f link = etmp->blink = ctmp->overf low =etmp;
else

{etmp->f link =ctmp->overf low;
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etmp->blink = ctmp->overflow->blink;
ctmp->overflow->blink->f link =etmp;

ctmp->overflow->blink = etmp;
2 : }

"/* fil.l out rest of checkpoint struct */
"ctxtp->ctime = cur-delta; /* time stamp of checkpoint */
ctmp->*ev_index = ev.-index; /* place in event array */
checkpt-nodes(ctmp); /* go get node values, too */
last.ck = cur-delta; /* remember that we checkpointed */

/* Routine to checkpoint the state of the nodes.
* Walks the network, copying each node value k the state of the
* INPUT flag into ctmp svect array, two nodes per byte.
* Argument is a pointer to the checkpoint structure.

checkpt-nodes (ctmp)

register ckptr ctmp;
{ register nptr n;

register int i. vindex = 0;
register char nib = 0, curbyte;

for (i = 0, vindex = 0; i < HASHSIZE; i++)
for (n = hash[i]; n; n = n->hnext)

{ if (nib == 0) /* even nodes in low nibble */
{ nib++;

curbyte = n->npot;

if (n->nflage & INPUT) curbyte J= Ox04;
}

else /* odd nodes in high nibble */
{ nib = 0;

curbyte I (n->npot << 4);
if (n->nflags k INPUT) curbyte 1= Ox40;
ctmp->svect [vindex] = curbyte:

vindex++;
}

}
if (nib) ctmp->svect(vindex] = curbyte;

}

/* Routine to restore the state of the nodes from a checkpoint.
* Walks the network, copying each node value k the state of the
* INPUT flag from ctmp svect array.

* Argument is a pointer to the checkpoint structure.
* */

restore-nodes (ctmp)

register ckptr ctmp;
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Sregister nptr a;

regipter int i. vindex = 0;
register char nib = O curbyte;
for (i = 0, vindex = 0$ • < HASESIZE; i++)

for (n = hash[il; n; n = n->hnext)
{ curbyte = ctmp->svect[vindex];

if (nib)
{nib = ;
n->evi n->ev2 = NULL;
n->npot ((curbyte >> 4) k 0x.03);
if (curbyte k Ox4O) n->nflags 1= INPUT;
else n->nilags k- INPUT;
vindex++;

}
else

{ nib++;
n->evl n->ev2 = NULL;

n->nrj? = (curbyte k Ox03);
if Ccurbyte k Ox04) n->nflags I= INPUT;
else n->nflags - INPUT;

/* Roll the simulation back to a time before t and restore the state
* from event chec•kpoint and node history lists

roll-back(t)
register long t;
{register ckptr ctmp;

register int i. j;
register evptr ev, etmp. ev.base;
ckptr nctmp;
int nevents = 0;
int oevents = 0;

/* find closest checkpoint to the roll-back time */
ctmp = ck-list.blink;
while (ctmp->ctime > t)

if (ctmp->blink == kck.lixt)
{ error("; roll-back: can't go back to %dN.t);

return 0;

else ctmp = ctmp->blink;

/* tell everyone who cares that we're rollin' back */
rotlback-notify (ctmp- >ctime);

/* walk the network restoring node values */
restore-nodes (ctmp);
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/* restore event array &overflow list. simulated time *
f or Ci = 0; i < TSIZE; i++)

1* free up olc current events *
{ev-.base = &ev..*rray~i];

if Cev..base->f link != ev..base)
Cev..base- >blink- >f link = evfree;

* ~evfree = ev..base->f link;
ev..base->f link = ev-base->blink =ev-base;

/* make a copy of this event list, if there is one
if Cctmp-> event(i.1 != NULL)

{ev = ctmp->evertri];
do

/* allocate event struct *
{if ((etmp =evfree) == NULL)

* {etmp =(evptr)al-bytes(lO sizeof (struct Event));
* ~for Qi = 0; -- j > 0; etmp++)

{etmp->f link = evfree;
evfree =etmp;

else evfree =etmp->f link;
/* Copy event data into new event *
etmp->enode =ev->enode;
etmp->ntime ev->ntime;
etmp->eval =ev->eval;0
etmp->type =ev->type;

etmp->f link = ev-base;
etmp -> b'Aik = ev-base ->blink;
ev..base->blink- >f link =etmip;

ev..base---L'.ink = etmp;
/* link 'Ludeb ~' pvqntg *

if (ev->type == 0)
etmp->enode->evl =etmp;

else if (ev->type =1

etmp->enode->ev2 =etmp;

while ((ev =ev->fli~nk) 1=ctmp- >event EiJ)

/* restore pointer into event array *
ev-index = ctiup->ev~index;

/* free up current overflow events *
if (overflow.f link != koverf low)

{over! low.blink->f link = evfree;
evfree =overflow.flink;
overflow.! link =overflow.blink = overf low:
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.. . . . .- .. .

/* make a copy of this event list, if there is one */
if (ctmp->overflow 1= NULL)

{ev = ctmp->overf low;
do

/* allocate event struct */
{if ((etmp = evfree) == NULL)

{ etmp = (evptr)al_bytes(1O * sizeof(struct Event));
for ( = 0; --j > 0; etmp++)

{ etmp->flink = evfree; '
evfree = etmp;

} . >
else evfree = etmp->f link;

/* Copy event data into new event */
etmp->enode = ev->enode;
etmp->ntime = ev->ntime;
etmp->eval = ev->eval;
etmp->type = ev->type;
etmp->flink = koverflow;
etmp->blink = overflow.blink;
overflow.blink->f link = etmp;
overflow.blink = etmp;

/* link nodes to events %/
if (ev->type == 0)

etmp->enode->evl =etmp;

else if (ev->type == 1)
etmp->anode->ev2 = etmp;

while ((ev = ev->flink) != ctmp->overf low);

/* restore current simulated time, and remember there's a
Sgood checkpoint here

cur-delta = ctmp->ctime;
lastck = cur-delta;

/* back up input list */
while ((cur-input->ntime >= cur-delta) & (cur-input != &inlist))

cur-input = cur-input->blink;

/* garbage collect old checkpoints */
if (ctmp->flink == &ck-list)

return; /* nothing to collect */
nctmp = ctmp->flink; /* remember next struct in list */
ctmp->flink = &ck-list; /* make last struct point to end */
ck-list.blink->f link = ck-free; /* old end points to free list */
ck-list.blink = ctmp; /* .., and end point to it */

ctmp = nctmp;
while (ctmp ck-free) /* now collect events inside */
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{for Ui 0; 1 < TSIZE; i++)
{ if ((ev = ctmp->event[i]) == NULL) continue;

ev->blink->flink = evfree; 0
evfree = ev;
ctmp->event~i] = NULL;

if ((ev = ctmp->overf low) != NULL)
{ ev->blink->flunk = evfree;

evfree = ev;
ctmp->overf low = NULL;

ctmp = ctmp->f link;

ck_-free = nctmp;

S/* Clean up and dispose of ancient history properly
* We walk the checkpoint list, reclaiming all events inside, and
* then reclaim the checkpoint list itself.
* We then move all input changes en masse to the free list.
* Finally, we take a new checkpoint, just for fun.

cleanup-hist()
{ register ckptr ctmp. nctmp;

register evptr etmp. ev;
register int i;

/* free up all checkpoint structures
"* for each checkpoint, we must first free up all event

"* structures

ctmp = ck-list. f link;
while (ctmp 1= &ck-list)

{ for (i = 0; i < TSIZE; i++)
{ if ((etrp = ctmp->event[i]) == NULL) continue;

ev = etmp;
etmp->blink->f link = evfree;
evfree = etmp;
ctmp->event[i] = NULL;

if ((etmp = ctmp->overf low) ! NULL)
{

ev = etmp;
etmp- >blink->f link = evfree;
evfree = etmp;
ctmp->overflow = NULL;

nctmp = ctmp->flink;
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ctmp->flink = ck-free; -.

ck.Iree = ctmp;
ctmp = nctmp;

ck-list.flink = ck-list.blink = kck-list;
"last-ck = 0;

/* flush old input changes (inputs on in-list before current time) *1
ev = kinlist;
cur-input->blink->f link = evfree;
cur-input->blink = &inlist;
evfree = inlist.flink;
inlist. flink = cur-input;

/* so's we can roll back to here if need be */
checkpointo;
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Appendix C

Raw Performance Data

The follo-wing table contains the raw performance data from the experim.ents de-

scribed in Section 4.2. The first column contains the name of the test vector, the

first component of the name indicates the vector length. The second column contains

the number of effective events generated for that vector. The remaining five columns

L contain the number ol clock ticks (16.2m Sec/ tick) per vector for each experiment.

-85-

•. . "



Vector # Events 1 2 3 4 6

2A 1729 2242 1481 950 715 627
2B 1807 2323 1345 1110 844 885
2C 1661 2105 1112 856 717 571
2D 2022 2662 1443 1132 967 845
4A 3678 4979 2845 2114 1733 1339
4B 4000 5395 3093 2328 1875 1506
4C 3977 5233 2939 1941 1824 1347
4D 4045 5541 2820 2380 1849 1477
6A 6714 9425 5356 4279 3036 2380
6B 4510 6345 3640 2685 1997 1661
6C 7196 9761 5464 4162 3087 2300
6D 6573 9347 5160 4054 2854 2397
8A 8414 11714 6291 4793 3764 3208
8B 8535 12339 6481 5052 4011 3000
8C 8140 11706 6232 5280 4335 3369
8D 7817 11652 6718 4524 3593 3128

10A NA 16925 9194 7241 5037 4038
10B NA 16182 8435 6913 4879 4361
10C NA 12343 6574 5184 4185 3360
10D NA 13287 7371 4927 4776 3701
12A 13981 20453 10168 7936 6907 5464
12B 14123 20285 10551 7784 6383 5692
12C 10636 15928 8934 6158 5484 3471
12D 11438 17328 8684 6623 5080 4560
14A NA 21592 12090 9356 7199 5327
14B NA 18348 9464 7023 5369 4795
14C NA 22572 12239 8195 6864 5116
14D NA 21195 11074 8692 6579 5321
16A 16190 24972 12728 9705 7610 6079
16B 17070 26500 13336 11395 8459 6788
16C 20539 31872 17563 13280 9683 7881
16D 14779 22609 11181 8734 6823 6122
24A 25009 39719 21046 16509 NA 9736
24B 21501 34636 17622 13602 NA 10070
24C 29648 46341 22430 17959 NA 11=2
24D 24793 39983 19583 16136 NA 9986

Simulation Time per Vector
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Appendix D

Profiling Data

The following tables contain the raw profiling data for the six partition experincr.,t.

The first six tables contain the data for each separate partition, while the last table

contains the aggregate sum. The data in each column are as follows:

1. The name of the subroutine.

2. The total time spent in each subroutine, measured in units of clock ticks

(16.2mSec per tick).

3. The total number of calls to each subroutine.

4. The average time spent in each call. This is the quotient of the total

time (expressed in mSec.) divided by the number of calls.

5. The percentage of the total time that was spent in each subroutine.

6. The percentage of the active simulation time spent in each subroutine.

The active simulation time is the total time minus the idle time (time

spent in step).

Subroutines with a "0" number of calls are library routines which were not recomn-
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piled with the profiling code.
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"Subroutine Time No. Calls mSec/Call % Total % Active
step 172405 51 54763.941 50.04 0.00
qldiv 66391 6566045 0.164 19.27 38.56
c-thev 19665 659956 0.483 5.71 11.42
cvtcond 14475 4892172 0.048 4.20 8.41
Handler 10073 5011287 0.033 2.92 5.85
"lqmul 9923 3144616 0.051 2.88 5.76
muldiv 7601 2925075 0.042 2.21 4.42
aim-nstep 6376 51 2025.318 1.85 3.70
msg-poll 6080 0 0.000 1.76 3.53
new-val 4918 199081 0.400 1.43 2.86
main 4781 0 0.000 1.39 2.78
checkpt-nodes 3991 3226 20.042 1.16 2.32
lmul 3823 0 0.000 1.11 2.22
enque 3143 335994 0.152 0.91 1.83
make-clist 2674 199081 0.218 0.78 1.55
setin 2225 16004 2.252 0.65 1.29
check-inputs 1330 376813 0.057 0.39 0.77
uldiv 1158 0 0.000 0.34 0.67
checkpoint 1042 3226 5.233 0.30 0.61
cshare-make-clist 630 25976 0.393 0.18 0.37
rcmul 591 219541 0.044 0.17 0.34
charge-share 503 25976 0.314 0.15 0.29
cleanup-hist 442 51 140.400 0.13 0.26
lrem 84 0 0.000 0.02 0.05
check-overflow 73 30776 0.038 0.02 0.04
find 60 16004 0.061 0.02 0.03
msg.handler 58 16208 0.058 0.02 0.03
node-change 9 1599 0.091 0.00 0.01
sbrk 9 0 0.000 0.00 0.01
msglfree 8 399 0.325 0.00 0.00
msg.cons 6 1550 0.059 0.00 0.00
LOSend 6 0 0.000 0.00 0.00
msg-send 4 1650 0.039 0.00 0.00
malloc 3 0 0.000 0.00 0.90
msg.-alloc 2 1650 0.020 0.00 0.00

Profiling Data for PartitioD € 1
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Subroutine Time No. Calls mSec/Call % Total % Active
step 174648 51 55476.424 50.27 0.00
qldiv 63293 6276652 0.163 18.22 36.63
cAhev 18164 632654 0.465 5.23 10.51
cvtcond 13401 4669912 0.046 3.86 7.76
Handler 10086 5135188 0.032 2.90 5.84
lqmul 9543 3004391 0.051 2.75 5.52
checkptnodes 7787 6346 19.879 2.24 4.51
muldiv 6949 2785478 0.040 2.00 4.02
sim.step 6332 316 324.615 1.82 3.66
msg.poll 6124 0 0.000 1.76 3.54
Imul 5614 0 0.000 1.62 3.25
new-val 4819 221392 0.353 1.39 2.79
main 4626 0 0.000 1.33 2.68
enque 3201 351800 0.147 0.92 1.85
make-clist 2694 221392 0.197 0.78 1.56
setin 2363 17603 2.175 0.68 1.37
checkpoint 2019 6346 5.154 0.58 1.17
check-inputs 1395 398133 0.057 0.40 0.81
uldiv 1064 0 0.000 0.31 0.62
cleanup-hist 877 51 278.576 0.25 0.51
cshare.make-clist 599 2505 3.874 0.17 0.35
rcmul 531 218913 0.039 0.15 0.31
charge-share 479 25050 0.310 0.14 0.28
restore-nodes 392 265 23.964 0.11 0.23
rolLback 100 265 6.113 0.03 0.06
lrem 98 0 0.000 0.03 0.06
check-overflow 75 34899 0.035 0.02 0.04
find 59 17603 0.054 0.02 0.03
msgihandler 49 17794 0.045 0.01 0.03
sbrk 36 0 0.000 0.01 0.02
msg.alloc 6 902 0.108 0.00 0.00
msglfree 6 198 0.491 0.00 0.00
malloc 5 0 0.000 0.00 0.00
node-change 3 576 0.084 0.00 0.00
msg.cons 2 902 0.036 0.00 0.00
LOSend 2 0 0.000 0.00 0.00
msg.send 1 902 0.018 0.00 0.00
settled 1 61 0.266 0.00 0.00

Profiling Data for Partition # 2
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Subroutine Time No. Calls mSec/Call % Total % Active

qldiv 96095 9587394 0.162 29.18 41.10
step 95473 51 30326.718 28.99 0.00
c.thev 27643 959099 0.467 8.39 11.82
cvtcond 20807 7148518 0.047 6.32 8.90
lqmul 14565 4595117 0.051 4.42 6.23
muldiv 10689 4273260 0.041 3.25 4.57
Handler 9720 4938794 0.032 2.95 4.16
simrestep 8030 51 2550.706 2.44 3.43
new-val 6748 296440 0.369 2.05 2.89
msg.poll 5871 0 0.000 1.78 2.51
setin 4763 22980 3.358 1.45 2.04
checkpt-nodes 4677 3406 22.245 1.42 2.00
enque 4564 498914 0.148 1.39 1.95
main 4360 0 0.000 1.32 1.86
Imul 4180 0 0.000 1.27 1.79
make-clist 3662 296440 0.200 1.11 1.57
uldiv 1613 0 0.000 0.49 0.69
check-inputs 1422 426232 0.054 0.43 0.61
checkpoint 1100 3406 5.232 0.33 0.47
cshare-make-clist 970 39123 0.402 0.29 0.41
rcmul 813 321857 0.041 0.25 0.35
charge.share 683 39123 0.283 0.21 0.29
cleanup-hist 472 51 149.929 0.14 0.20
Irem 104 0 0.000 0.03 0.04
check-overflow 100 35256 0.046 0.03 0.04
find 86 22980 0.061 0.03 0.04
msgihandler 61 23140 0.043 0.02 0.03
sbrk 13 0 0.000 0.00 0.01
node-change 6 641 0.152 0.00 0.00
msglfree 3 159 0.306 0.00 0.00

malloc 3 0 0.000 0.00 0.00
msg-cons 2 692 0.047 0.00 0.00

msg.alloc 2 692 0.047 0.00 0.00

settled 2 51 0.635 0.00 0.00
msg-zend 0 692 0.000 0.00 0.00

Profiling Data for Partition . 3
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Subroutine Time No. Calls mSec/Call % Total % Active
qldiv 105704 10520809 0.163 32.59 41.61
step 70274 51 22322.329 21.67 0.00

cthev 30744 1052866 0.473 9.48 12.10
cvtcond 22494 7842552 0.046 6.94 8.86
lqmul 16116 5041376 0.052 4.97 6.34
muldiv 11559 4693488 0.040 3.56 4.55
Handler 9736 4948014 0.032 3.00 3.83
simrestep 8473 103 1332.647 2.61 3.34
new-val 7236 310824 0.377 2.23 2.85
msg.poll 5804 0 0.000 1.79 2.28
checkpt-nodes 5354 3887 22.314 1.65 2.11
enque 5021 532620 0.153 1.55 1.98
setin 4585 23045 3.223 1.41 1.80

lmul 4560 0 0.000 1.41 1.80
main 4493 0 0.000 1.39 1.77
make-clist 3866 310824 0.201 1.19 1.52
uldiv 1761 0 0.000 0.54 0.69
check-inputs 1501 444225 0.055 0.46 0.59
checkpoint 1341 3887 5.589 0.41 0.53
cshare.make.clist 1035 42618 0.393 0.32 0.41
rcmul 850 347888 0.040 0.26 0.33
charge-share 712 42618 0.271 0.22 0.28
cleanupihist 536 51 170.259 0.17 0.21
Irem 106 0 0.000 0.03 0.04
restore-nodes 93 52 28.973 0.03 0.04
check-overflow 92 36748 0.041 0.03 0.04
msgihandler 84 23210 0.059 0.03 0.03
find 77 23045 0.054 0.02 0.03
sbrk 25 0 0.000 0.01 0.01
roll-back 19 52 5.919 0.01 0.01
node-change 12 1341 0.145 0.00 0.00
msg-alloc 8 1444 0.090 0.00 0.00
msg-free 8 335 0.387 0.00 0.00
msg.send 7 1444 0.079 0.00 0.00
LOSend 6 0 I 0.000 0.00 0.00
msg-cons 2 1444 0.022 0.00 0.00
al-bytes 2 167 0 0.194 0.00 0.00
rollback-notify 1 52 0.312 0.00 0.00
malloc 1 51 0.318 0.00 0.00
settled 0 51 0.000 0.00 0.00

Profiling Data for Partition # 4



%

Subroutine TTime No. Calls m-Sec/Cal % Total % Active
qldiv 112574 11195769 0.163 34.85 41.55
step 52083 51 16544.012 16.13 0.00
c..thev 32214 1114184 0.468 9.97 11.891
cvtcond M1011 8383728 0.046 7.43 8.86
lqrnul 131919 5354395 0.05 1 5.24 6.2 S
Inxuliv 112327 4989152 0.040 3.82 45
Handler 991'r 4954787 0.032 3.073.-
sim..step 8676 113 1243.816 2.69 3.20
new..val 7603 323078 0.381 2.35 2.81
msg-pol 5914 0 0.000 1.83 2.18
checkpt..nodes 5521 4029 22.199 1.71 2.04
enque 5213 562673 0.150 1.61 1.92
imul 4811 0 0.000 1.49 1.78
setin 4772 23745 3.256 1.48 1.76
main 4.361 0 0.000 1.35 1.61
make..dlist 4195 323078 0.210 1.30 1.55
uldiv 1820 0 0.000 0.56 0.67
check-.inputs 4557 455497 0.162 1.41 1.68
checkpoint 1365 4029 5.488 0.42 0.50
cshare..make..clist 1171 44897 0.423 0.36 0.43
rcmul SO57 365243 0.043 0.30 0.36
charge-.share 848 44897 0.306 0.26 0.31
cleanup..hist 545 51 173.118 0.17 0.20
find 120 23745 0.082 0.04 0.04
restore-.nodes 108 62 28.219 0.03 0.04
msg..handler 101 23908 0.068 0.03 0.04
hrem 94 0 0.000 0.03 0.03
check-overflow 79 38553 0.033 0.02 0.03
roll-back 31 62 8.100 0.01 0.016
sbrk 28 0 0.000 0.01 0.01
node-.change 14 1281 0.177 0.00 0.01
msg..send 7 1394 0.081 0.00 0.00
LOSend 7 0 0.000 0.00 0.00
msg..aloc 6 1394 0.070 0.00 0.00
msg.Iree 5 341 0.238 0.00 0.00
msg..cons 3 1394 0.035 0.00 0.00
malloc 2 0 0.000 0.00 0.00
rollback-.notify 1 62 0.261 0.00 0.00
al-bytes 0 175 0.000 0.00 0.00
settled 0 51 0.000 0.00 0.00

Profiling Data. for Partition:* 5
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Subroutine Time No. Calls mSec/Call % Total % Active
qldiv 125032 12343811 0.164 40.25 41.84
c-thev 37045 1224108 0.490 11.92 12.40
cvtcond 27094 9248812 0.047 8.72 9.07
lqmul 19018 5918752 0.052 6.12 6.36
muldiv 14468 5515133 0.042 4.66 4.84
step 11799 51 3747.918 3.80 0.00
Handler 10000 4811223 0.034 3.22 3.35
simrestep 9626 151 1032.723 3.1C 3.22
new-val 8625 348289 0.401 2.78 2.89
checkpt-nodes 6478 4680 22.424 2.09 2.17
msg.poU 5816 0 0.000 1.87 1.95
enque 5771 610069 0.153 1.86 1.93
Imul 5560 0 0.000 1.79 1.86
setin 4942 23685 3.380 1.59 1.65
make-clist 4741 348289 0.221 1.53 1.59
main 4628 0 0.000 1.49 1.55
uldiv 2089 0 0.000 0.67 0.70
check-inputs 1721 473487 0.059 0.55 0.58
checkpoint 1570 4680 5.435 0.51 0.53
cxhareamake-clist 1346 49596 0.440 0.43 0.45
rnmul 1092 403619 0.044 0.35 0.37
chrge-hare 893 49596 0.292 0.29 0.30
ciemaup-hist 662 51 210.282 0.21 0.22
restore-nodes 188 100 30.456 0.06 0.06
""rhem 112 0 0.000 0.04 0.04
msg.handler 103 23851 0.070 0.03 0.03
find 92 23685 0.063 0.03 0.03
check-overflow 75 40820 0.030 0.02 0.03
roll-back 54 100 5.508 0.01 0.01
sbrk 30 0 0.000 0.01 0.01
malloc 2 0 0.000 0.00 0.00
al-bytes 1 197 0.082 0.00 0.00
msg.cons 1 151 0.107 0.00 0.00
msg.alloc 1 151 0.107 0.00 0.00
msg-end 0 151 0.000 0.00 0.00
rollback.notify 0 100 0.000 0.00 0.00
settled 0 51 0.000 0.00 0.00
msglfree 0 30 0.000 0.00 0.00
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